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ABSTRACT

Chronic stress disrupts physiological and psychological homeostasis, yet effective therapeutic
strategies remain limited. This study investigated the adaptogenic effects of Rhodiola rosea
root powder (standardized to 3% salidroside) on stress-induced behavioral and physiological
changes in a murine model of chronic mild stress. Female C57BL/6 mice were exposed to a 19-
day chronic mild stress protocol and received daily oral supplementation of Rhodiola rosea
root powder, administered in gummies to ensure accurate and stress-free intake, or a placebo.
At the end of the experiment, behavioral outcomes were assessed using the Elevated Plus
Maze (EPM) and Open Field (OF) tests. Compared with stressed controls, stressed treated mice
demonstrated significant improvements. In the EPM, treated mice showed significantly higher
locomotor activity (greater distance and speed), with more open-arm entries and time, as well
as increased head dips, indicating reduced anxiety and enhanced exploration. In the OF test,
they also displayed greater locomotion and more center-zone entries, both reaching statistical
significance and supporting reduced anxiety-like behavior. These behavioral improvements
were accompanied by a significant reduction in serum corticosterone levels, indicating
modaulation of the physiological stress response. Together, the findings support the anxiolytic
and adaptogenic properties of Rhodiola rosea root powder and highlight its potential as a
natural intervention for managing chronic stress. Future studies should investigate the long-
term efficacy and mechanisms of its bioactive compounds in stress resilience and mental

health.
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1. INTRODUCTION

A certain amount of stress can sometimes be beneficial, providing the drive and energy
needed to handle situations like exams or work deadlines (Lee et al., 2015). However, chronic
and excessive stress can lead to cumulative negative effects on health, through a phenomenon
described by the concept of “allostatic load” (Lee et al., 2015; Rohleder, 2019; McEwen, 1998a3;
McEwen, 2007). This concept refers to a shifted or altered state of homeostasis resulting from
prolonged, excessive, or poorly regulated allostatic responses (Karatsoreos, 2011; McEwen,
1998b; Lee et al., 2015). Moreover, extensive research demonstrates that prolonged exposure
to chronic stress is linked to adverse effects, disrupting the functioning of the immune,
cardiovascular, neuroendocrine, and central nervous systems (Anderson, 1998; Cohen et al.,

2007; Rohleder, 2019).

In the present study, a murine model of chronic stress was established through
repeated exposure to mild stressors. This approach is well-documented in the literature as a
reliable paradigm to induce both physiological and behavioral alterations that resemble stress-
related disorders in humans. Previous work has demonstrated that chronic early-life stress in
mice leads to acute and long-lasting neuroendocrine and cognitive abnormalities (Courtney J.
Rice et al., 2008, Lee and Jung, 2024). Moreover, rodent models of chronic stress have been
widely validated for their ability to induce measurable alterations in exploratory behavior,
anxiety-like responses, and hypothalamic—pituitary—adrenal (HPA) axis activity (Borrow et al.,
2019, Horvath et al., 2025). Chronic behavioral stress paradigms in mice can generally be
classified into models emphasizing predominantly social stressors or those employing non-
social aversive stimuli, with some protocols incorporating a combination of both (Tran and

Gellner, 2023). Rodent models combining physical and psychological stressors have yielded key
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insights into stress physiology (Atrooz et al., 2021). Such models provide a robust framework
for evaluating the efficacy of potential adaptogenic or anxiolytic interventions (Xu et al., 2006,
Llopis et al., 2025) in mitigating the behavioral and physiological consequences of sustained

stress exposure.

Despite the considerable negative impact of chronic stress, current pharmacological
treatments show a significant gap (Finsterwald & Alberini, 2014). Many vitamin supplements,
and prescription medications primarily target individual symptoms rather than addressing
stress in a more holistic manner. Furthermore, psychiatric drugs such as antidepressants,
anxiolytics, or beta-blockers are generally prescribed for more severe conditions like
depression or anxiety. Their use carries risks of overtreatment, including serious side effects

and potential dependency (Anghelescu et al., 2018).

Medicinal plants have historically played a significant role in drug discovery, offering a
wide array of bioactive compounds (Chaachouay & Zidane, 2024, Jalil et al., 2024, Sytar &
Hajihashemi, 2024). However, the development of innovative technologies for obtaining pure,
standardized, and sustainably cultivated botanicals with high levels of specific secondary

metabolites is essential to produce plant-derived natural products.

Rhodiola rosea L. is gaining significant attention among medicinal plants for its
potential to alleviate stress. Recognized as an “adaptogen”, it is a substance that enhances the
body’s resistance to stress without disrupting normal biological functions while promoting
physiological balance (Panossian & Wikman, 2010). A plant is considered adaptogenic when it
helps the body regain balance and adapt to various types of stress. Adaptogens act as mild
stress mimetics at low doses, stimulating adaptive stress-response pathways and supporting

neuroendocrine and immune functions, which explains their traditional use against fatigue,
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stress, and aging (Panossian et al., 2021). To be classified as an adaptogen, it must meet three
specific criteria: it increases the body's resistance, maintains or restores physiological balance,
and is non-toxic. Its therapeutic effects are attributed, among others, to active secondary
metabolites that reduce cortisol levels (Sarris et al., 2016). Supported by its long history in
traditional medicine and extensive scientific research (Romm et al., 2010; Shah et al., 2017;
Tao et al., 2019), the European Medicines Agency (EMA) issued a herbal monograph,
approving Rhodiola rosea L. rhizoma et radix for traditional use as an adaptogen to temporarily
relieve stress-related symptoms, including fatigue, exhaustion, and general weakness
(EMA/HMPC/232100/2011; Anghelescu, 2018; Ivanova Stojcheva et al., 2022). In addition to
its recognition by the EMA, Rhodiola rosea L. is officially listed in the United States
Pharmacopeia and is included in the pharmacopoeias of several countries in the Eurasian
Economic Union, such as Russia and Belarus, where it is used in officinal medicine. These
listings reflect a growing international consensus on the relevance of its therapeutic potential

and support its integration into both traditional and modern medical frameworks.

Salidroside and rosavins, the primary bioactive compounds in Rhodiola rosea L.,
modulate the hypothalamic—pituitary—adrenal (HPA) axis, although their precise mechanisms
of action remain only partially understood (Panossian & Wagner, 2005). The adaptogenic
effects are mainly attributed to salidroside. Centrally, one study demonstrated that salidroside
reduces c-Fos expression in the paraventricular nucleus (PVN) of the hypothalamus, a neuronal
activation marker associated with corticotropin-releasing hormone (CRH) secretion. This
inhibition of hypothalamic activity leads to a decrease in CRH release, thereby limiting the
initial activation of the HPA axis (Xia et al., 2015). Yang et al. (2014) further showed that
salidroside modulates HPA axis activity by downregulating hypothalamic CRH expression and

reducing serum corticosterone levels in olfactory bulbectomized rats, suggesting an
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antidepressant effect partially mediated by HPA regulation. However, current data remain
insufficient to establish whether Rhodiola rosea L. significantly influences ACTH or cortisol

release.

More than 140 compounds have been isolated from Rhodiola rosea L. (Marchev et al.,
2017; lvanova Stojcheva et al., 2022). Among these, salidroside (rhodioloside), trans-cinnamyl
alcohol glycoside compounds (such as rosin, rosavin and rosarin), and tyrosol are considered
the most critical constituents for its therapeutic activity (Panossian et al., 2010; Jowko et al.,
2018; Majolo et al., 2021). Notably, rosavin is unique to Rhodiola rosea L. within the Rhodiola
genus, whereas salidroside and tyrosol are commonly found in other Rhodiola species

(Kucinskaite et al., 2007; Wiedenfeld et al., 2007).

Typically, preparations of Rhodiola rosea L. are standardized to contain 1% salidroside
and 3% rosavin (Brown, 2002; Ishaque, 2012; Dimpfel et al., 2018). Salidroside and rosavin are
generally regarded as the key adaptogenic compounds in herbal medicinal products and
dietary supplements. Several preclinical (Perfumi & Mattioli, 2007; Mattioli & Perfumi, 2007;
Mattioli et al., 2009; Cifani et al., 2010; Xia et al., 2015; Vasileva et al., 2017; Dinel et al., 2019)
and clinical studies (Darbinyan et al., 2000; Olsson et al., 2009; Edwards et al., 2012; Cropley
et al., 2015; Heldman et al., 2016) have demonstrated that Rhodiola rosea root extracts may
serve as effective natural remedies for improving mental and cognitive performance under
stress. However, these studies have exclusively focused on root extracts, while no published

research has yet examined the effects of the whole root powder.

Root powder preserves the complete phytochemical spectrum of the plant (Chibuye et al.,
2023), including minor compounds that may act synergistically rather than isolating individual

molecules (Malongane et al., 2017, Vaou et al., 2022). The powder used in this study was
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standardized to 3% salidroside, higher than typical extract formulations (1% salidroside, 3%
rosavin), making it a unique preparation that could elicit different or stronger adaptogenic
effects.

To the best of our knowledge, this is the first experimental research to describe the
anxiolytic and corticosterone-reducing effects of whole root powder standardized to 3%
salidroside in a chronic stress model. Unlike prior work that often employed acute stress
paradigms or tested extracts in healthy animals, our investigation specifically evaluated root
powder under chronic mild stress conditions, a model more relevant to human stress-related
disorders. Furthermore, administration in a gummy format ensured accurate, stress-free
dosing and represents a practical delivery system translatable to human use. Together, these
findings highlight that Rhodiola rosea root powder offers a minimally processed, sustainable,
and effective alternative to standardized extracts, expanding the therapeutic potential of this

adaptogenic plant for stress management.

The aim of this study was to evaluate the potential effects of Rhodiola rosea L. root
powder, with high level of salidroside (3%), on a murine model of chronic stress. For this
purpose, a murine model of chronic stress was established using repeated mild stress
exposure. The impact of daily Rhodiola rosea L. root powder administration during the stress
period was then assessed. At the end of the experiment, stress levels were evaluated by
measuring anxiety-like behavior and corticosterone levels. The results confirm that Rhodiola
rosea L. root powder significantly modulates both physiological and behavioral markers of

stress.
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2. MATERIAL & METHODS

a. Animals

The guidelines for animal welfare were approved by the Committee on Animal Research of the

Université de Mons (ref RI-01501).

8-weeks-old C57BL6 female mice were supplied by Charles River (agreement: C 69 208 1301).
Mice were acclimated for 1 week in the animal house at the University of Mons (agreement:
LA1500550T) and were sustained in a 12-hour light—dark cycle. The animals were housed in
groups (6 mice per cage) and kept in a room with controlled temperature and humidity, with
food and water available ad libitum. At the end of the experiment, mice were anesthetized by
isoflurane inhalation and euthanized by decapitation for blood collection. Blood samples were

collected two hours after the final behavioral test.

To avoid stress-related bias due to fights, which are often observed in cohorts of male mice,

only female mice were used for this study.

b. Botanical compound and measurement of salidroside, rosin, rosarin and rosavin

(UHPLC)

The Rhodiola rosea L. roots powder used in this study (batch number RR_2405_001) was
produced by Botalys (Ghislenghien, Belgium). A carefully selected cultivar of Rhodiola rosea L.
is hydroponically cultivated in an innovative vertical farming technology, with a strict control
of growing conditions (BOTALYS is FSSC22000 certified), allowing a reproducible chemical
composition of the roots from one batch to another, and containing high content of active

compounds. At the end of the culture the fresh roots are harvested and dried. The dried
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Rhodiola rosea L. roots is then grounded to obtain powder. The powder is sieved on 300um.

The final product is analysed for salidroside and Rosavins content before release.

The identity of the Rhodiola rosea L. roots was verified by DNA sequencing. The sequence of
the DNA fragment obtained from Botalys Rhodiola rosea L. root powder presents 99.66% of
similarity with Rhodiola rosea L. sequence recorded in the Genbank genetic database.
Moreover, the active compounds of Rhodiola rosea L., i.e. salidroside and rosavins are

detected in the Botalys Rhodiola rosea L..

Compounds were extracted and analyzed as follows: the dry powder of Rhodiola rosea L.
(0.1g) was extracted in 10 mL of 70% methanol during 45 minutes in an ultrasonic bath. After
extraction, the solution was filtered through a 0.22-um Millipore filter and used for UHPLC
analysis. The content of salidroside, rosin, rosarin and rosavin was quantified using a
SHIMADZU UHPLC LC-20 ADXR modular system, which included an SPD-40V detector, SIL-40C
autosampler, LC-40B XR pump, CTO-40C column oven, and a Shim-pack GIST C18 2 um column
(150 x 2.1 mm). A 2 uL sample injection volume was used, with analysis conducted at 40°C and
detection at 192 nm. Separation was achieved using a linear gradient elution with solvent A
(0.1% phosphoric acid solution) and solvent B (acetonitrile). The gradient was as follows: t =0
min, 98% A; t = 13.33 min, 88% A; t = 22 min, 30% A; and t = 22.66 min, 98% A. The flow rate
was set to 0.45 mL/min. Calibration curves were established using standards of salidroside,

rosin, rosarin and rosavin purchased from Sigma-Aldrich Merck.

The concentration was measured using the following formula:

ppm mesured x extraction volume
mass x 10 000

Percentage of molecule =

10
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The total rosavins content is calculated as the sum of the percentages of rosin, rosavin, and

rosarin.

c. Treatment

To avoid the stress associated with gavage, the daily treatment was orally administrated to the

mice in the form of a gummies ensuring both precise and controlled intake.

The gummies were prepared as follow: 100 ml of water and 60 g of granulated sugar were
mixed and brought to a boil for a few minutes. Then, 3 sheets of gelatin (or 6 g of powdered
gelatin) and 4 ml of raspberry flavoring were added to the mixture. The solution was left to
cool to + 70°C. For “Rhodiola gummies”, 67.2mg/mL of Rhodiola rosea L. root powder was
then incorporated to the solution and homogenized. For “placebo gummies”, nothing was
added to the mixture. Next, 1 ml of the solution was poured into each cavity of a silicone mold
which was placed in the fridge until gummies solidification. Finally, the gummies were cut into
four equal and standardized portions, ensuring that each animal received 16.8 mg of Rhodiola

rosea L. root powder per dose.

The selected dose of 800 mg/kg/day was determined based on previous research findings (Liu
et al., 2015; Dinel et al., 2019; Mattioli & Perfumi, 2007). Additionally, a prior toxicity study

(unpublished data) confirmed the safety of the product at a dose of 2000 mg/kg/day.

Each mouse received one gummy per day, always at the same time, and administration was
performed individually in a separate cage to ensure full ingestion. Cages were visually
inspected to confirm that each mouse consumed the entire portion without fragmentation or
leftovers. Animals were observed for approximately 10 minutes after administration to verify

complete consumption. Behavioral testing was conducted approximately one hour after

11
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gummy administration. Stressful events followed one another without interruption, in

accordance with the protocol described.

d.

Induction of chronical stress

To induce mild stress in the experimental group, a sequence of stressors was applied following

a standardized protocol. These stressors were selected to mimic environmental and

physiological challenges, ensuring a controlled yet multifaceted stress exposure (Umukoro, S.

et al,, 2016; Marques, J.G. et al., 2021; Zimprich, A. et al., 2014). The protocol consisted of the

following sequential stress-inducing conditions:

Cage tilting: the home cage was inclined at a 30° angle for a duration of 6 hours to
disrupt spatial stability.

Olfactory stress: subjects were exposed to the odor of lemon essential oil for 24 hours,
a stimulus known to induce mild discomfort in rodents.

Food and water deprivation: access to food and water was restricted for a period of 18
hours to simulate transient resource scarcity.

Bedding reduction: the quantity of bedding material was significantly reduced for 6
hours, limiting comfort and thermoregulation.

Continuous light exposure: a 24-hour period of uninterrupted light exposure was
implemented to disrupt circadian rhythms.

Social isolation: subjects were housed individually for a total of 3 days to induce
psychosocial stress.

Physical restraint: finally, animals were subjected to a 30-minute physical restraint

session to elicit an acute stress response.

12
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This multi-component protocol was designed to elicit a cumulative stress response, modeling

a mild but persistent stress condition.

e. Elevated plus maze (EPM) test

The EPM is a widely used tool in behavioral research to assess stress and anxiety in rodents,
particularly mice (Ray, A. et al., 2016). This apparatus consists of two open arms and two closed
arms arranged in a cross shape, elevated above the ground. The test leverages the natural
conflict in mice between their exploratory instincts and their innate aversion to open, elevated
spaces. By observing the time spent in the open arms versus the closed arms, researchers can
qguantify the mouse's anxiety levels. For instance, a more stressed mouse will spend more time
in the closed arms, which are perceived as safer. The animals were monitored for a duration
of 5 minutes using the EthoVision tracking system. Behavioral data were recorded and
subsequently analyzed following the statistical methods outlined below. The dimensions of the
EPM were as follows: the open arms measured 35 cm each, the closed arms were 35 cm each,
the corridor width was 5 cm, the walls of the closed arms were 20 cm in height and the

apparatus was elevated 60 cm above the floor (Ugo Basile).

In this study, the Elevated Plus Maze (together with the Open Field test) was employed across
all three experimental phases with clearly defined time points. In Phase |, mice (both control
and stressed groups) were tested at three periods: baseline (before any stress exposure), pre-
stress (D+19), and post-stress (D+26) to assess the effects of the chronic mild stress protocol.
In Phase Il, the same tests were used at two time points (DO and D14) without any treatment
or stress to evaluate possible habituation effects. In Phase lll, a finalized protocol compared

stressed mice receiving daily Rhodiola rosea L. root powder (D+15 to D+33) with stressed but

13
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untreated controls, with a single behavioral assessment performed at the end of the stress

period (D+33) before sacrifice and blood collection.

f. Openfield (OF) test

The OF test is a common method for assessing stress and anxiety in mice (Ray, A. et al., 2016).
It involves placing the animal in a large open arena and observing its movements. Anxious mice
tend to stay near the walls, while less anxious ones explore the center. Key measures include
distance traveled, time spent in the center, and exploratory behavior, providing insights into
emotional state and treatment effects. Animals were monitored for a duration of 5 minutes
using the EthoVision tracking system. Behavioral data were collected and analyzed using the
statistical methods detailed below. The dimensions of the experimental arena were 40 x 40 x

40 cm (Ugo Basile). The wall was 40 cm in height.

g. Corticosterone measurement

Corticosterone levels were measured using the ELISA kit from Enzo Life Sciences (ADI-901-
097). During the euthanasia of the animals, blood was collected and kept at 4°C for 24 hours.
The blood was then centrifuged, and the supernatant was carefully collected. The supernatant
was stored at -80°C until further analysis. The dosing was performed according to the kit's

recommendations.

h. Statistical analysis

All values are expressed as the mean + standard error of the mean (SEM). Graphs and statistical

analyses were performed using GraphPad Prism version 10.

For the first phase of result, after verifying the normality assumption, a two-way ANOVA for

repeated measures was conducted, followed by Fisher's post hoc test for multiple

14
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comparisons. Corticosterone levels, which is not a repeated measure, and which did not meet
normality assumptions, were analyzed using a non-parametric Mann-Whitney test.

For the second phase of result, paired t-tests were used for data that followed a normal
distribution, whereas Wilcoxon signed-rank tests were applied for non-normally distributed
results.

For the last phase of result, unpaired t-tests were performed for normally distributed data,
while Mann-Whitney tests were used for non-parametric comparisons. A p-value of less than

0.05 was considered statistically significant.
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3. RESULTS

a. Salidroside and Rosavins level in Rhodiola rosea L. roots powder

An HPLC method was developed for the identification of five marker compounds of Rhodiola
rosea (salidroside, rosarin, rosavin, rosin, and rosiridin). A similar analytical objective had
previously been reported by Ganzera et al. (2001) and Ajdert et al. (2022). The preliminary
quality assessment did not reveal the presence of rosavin or rosiridin in our sample (Figure 1,
Table 1). Salidroside and rosavins (rosin, rosavin, rosarin) were measured by UHPLC in the
Rhodiola rosea L. roots powder used in this study. A content of 3.0% (g/100g of dry matter)

salidroside and 0.8% rosavins (rosin, rosavin, rosarin) were measured (Table 1).

In addition, qualitative screening for other potential marker compounds—herbacetin, tricin,
kaempferol, 2-(4-hydroxyphenyl)ethanol (tyrosol), gallic acid, chlorogenic acid, caffeic acid,
gossypetin, rhodiocyanoside A, and (2RS)-lotaustralin—also confirmed their absence in the
experimental material. Among the identified compounds, only tyrosol was detected as a trace
constituent.

Table 1 : Analysis results of Rhodiola rosea L. root powder (n=3; Botalys).

Name Ret. Time Area Height Conc. Unit

Salidroside | 5.84 £0.04 9297057 +34892 1522896 + 10520 277.67+1.04 ppm

Rosarin | 12.11+0.04 201836 + 13223 31366 + 834 12.22+0.80 ppm
Rosavin - - - - ppm
Rosiridin - - - - ppm

Rosin 12.54+£0.04 1052150 * 15080 135189 £ 616 62.40+0.89 ppm

16



Chromatogram
Rhodiola rosea roots powder (Botalys)

Salidroside

T T T
0.0 2,5 50 7.5 10,0 12,5 15,0 17,5 20,0 225 250 27,5 30,0

313 min

314 Figure 1 : Chromatogram of Rhodiola rosea L. root powder (Botalys).
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1. Experimental design
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Figure 2 : This phase aimed to assess the effects of mild chronic stress on behavior and serum corticosterone levels, in the absence of any

treatment. 1. Experimental design of phase I: Mice were acclimated for 7 days. A first behavioral stress assessment was performed at Day 6

(D6) using the Elevated Plus Maze (EPM) and Open Field (OF) tests. From Day 8 (D8) to Day 26 (D26), animals received one placebo gummy per

day, administered individually in a separate cage to ensure full ingestion. A second behavioral assessment was conducted at D19, prior to

stress induction. From D20 to D26, animals underwent a sequence of mild unpredictable stressors, including : cage tilting, olfactory stress,

food and water deprivation, bedding reduction, continuous light exposure, social isolation, and physical restraint. At D26, a final behavioral

assessment was followed by sacrifice and blood collection for corticosterone analysis. 2. Elevated Plus Maze results: (a) Distance traveled; (b)

Movement speed; (c) Entries into open arms; (d) Ratio of time spent in open vs closed arms; (e) Head dips. 3. Open Field results: (a) Distance

traveled; (b) Movement speed; (c) Entries into the center area; (d) Ratio of time spent in the center vs periphery. 4. Corticosterone assay: Serum

corticosterone levels at D26. *Data are shown as mean + SEM. N = 12 mice per group. Statistical significance: *p < 0.05; **p < 0.01; ***p < 0.001;

***p <0.0001.
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This first study was conducted to evaluate the effect of mild stress exposure on cortical level
and behavioral in the absence of any treatment. The study was conducted on two groups of
mice: a stressed group (n=12) and a non-stressed group (n=12), both receiving a placebo. The
experimental timeline is reported in Figure 2.1. During the first week (D1-D6), the mice were
acclimated to the caretaker and trained to consume the gummies. On D6, a baseline anxiety
level assessment was conducted using behavioral tests (EPM and OF tests). Starting on the
eighth day (D8), all animals received a daily dose of the placebo. A second behavioral
evaluation was performed on D19, prior to stress induction in order to evaluated to effect of
exposition to gummies and daily manipulation. Between D20 and D26, stress was induced to
the stressed group, while both groups continued to receive the placebo. On D26, a third and
final anxiety level assessment was conducted using the same behavioral tests (EPM and OF
tests). Finally, the animals were euthanized, and blood was collected to measure the final

corticosterone levels in serum.

The present findings reveal a significant reduction in exploratory behavior in mice as early as
the second behavioral assessment, prior to exposure to stress-inducing conditions. These
behavioral changes were consistently observed across both the EPM and OF tests, suggesting

a robust and early decrease in exploratory activity.

In the EPM test (Figure 2.2), both stressed and non-stressed groups exhibited a significant
reduction in the distance traveled between baseline (D6) and pre-stress (D19). In the stressed
group, the distance dropped from 1571.0 + 110.7 cm to 763.4 + 80.9 cm, while in the non-
stressed group, it decreased from 1276.1 + 72.9 cm to 697.1 + 74.1 cm. No significant changes

were observed between D19 and post-stress (D26) in either group. A slight initial difference is
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noted between the stressed (1571.0 £ 110.7 cm) and non-stressed groups (1276.1 £ 72.9 cm).

No significant difference is observed between groups either before or after stress exposure.

Movement speed (Figure 2.2.b) followed the same pattern: a marked decline from D6 to D19
(5.2+0.4 cm/sto 2.5 £ 0.3 cm/s in stressed animals; 4.3 £ 0.2 cm/s to 2.3 £ 0.2 cm/s in non-
stressed), with no further change by D26.A slight initial difference is noted between the
stressed (5.2 + 0.4 cm/s) and non-stressed groups (4.3 = 0.2 cm/s). No significant difference is

observed between groups either before or after stress exposure.

The number of entries into open arms (Figure 2.2.c) also declined significantly between D6
and D19 in both groups (stressed: 30.3 + 4.6 to 11.1 £ 5.1; non-stressed: 31.4 + 4.4 to 10.3 +
2.1), with no significant change at D26. No difference between groups was detected at any
point. Regarding the ratio of time spent in open vs. closed arms (Figure 2.2.d), the stressed
group showed a significant reduction only between D6 (0.2 £ 0.0) and D26 (0.0 £ 0.0). The non-
stressed group showed no significant variation over time. No significant difference is observed
between the stressed and non-stressed groups at the initial time, before, or after stress

exposure.

The number of head dips (Figure 2.2.e) followed a similar trend: a marked decrease from D6
to D19 (stressed: 44.3 + 5.6 to 18.0 + 5.8; non-stressed: 44.4 + 5.6 to 13.3 + 2.2), with stable
values at D26. No significant difference was observed between groups at any time. In the OF
test (Figure 2.3), similar behavioral patterns were observed. Distance traveled (Figure 2.3.a)
decreased significantly between D6 and D19 in both groups (stressed: 2202.2 + 107.7 cm to
1123.9 + 62.3 cm; non-stressed: 1684.4 + 119.1 cm to 943.0 * 73.8 cm), remaining stable

through D26. A slight initial difference is noted between the stressed (2202.2 + 107.7 cm) and
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non-stressed groups (1684.4 + 119.1 cm). No significant difference is observed between

groups either before or after stress exposure.

Movement speed (Figure 2.3.b) decreased significantly from baseline to D19 (stressed: 7.3
0.4 cm/s to 3.7 £ 0.2 cm/s; non-stressed: 5.6 + 0.4 cm/s to 3.1 £ 0.2 cm/s), but no difference is
found between D26 and D19. A slight initial difference is noted between the stressed and non-
stressed groups. No significant difference is observed between groups either before or after

stress.

The number of entries into the center area (Figure 2.3.c) declined from D6 to D19 in stressed
animals (28.9 £ 2.5 to 20.3 + 2.0), with no significant change at D26. In non-stressed mice, the
decline from D6 (22.4 + 1.6) to D19 (17.0 £ 2.1) was not statistically significant. A slight initial
difference is noted between the stressed and non-stressed groups. No significant difference is

observed between groups either before or after stress exposure.

Regarding the center/border time ratio (Figure 2.3. d), no significant variation was found over
time in either group, or between groups at any time point. In contrast to the behavioral
findings, corticosterone levels provided clear physiological evidence of stress exposure (Figure
2.4). At the end of the experiment, the stressed group exhibited an almost threefold increase
in circulating corticosterone levels, rising from 36.5 + 7.5 ng/mL in the non-stressed group to
109.6 + 28.1 ng/mL (p < 0.05). Given that corticosterone is a well-established biomarker of
stress in rodents, this substantial elevation confirms the efficacy of the stress induction

protocol in eliciting a hormonal stress response.

Exploratory behavior showed a marked decline in mice as early as the second behavioral
assessment, even before stress exposure. This reduction was consistently observed across
both the Elevated Plus Maze and Open Field tests, affecting distance traveled, movement
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speed, and open-area exploration. No significant differences emerged between stressed and
non-stressed groups at post-stress time points, which could be explained by the mark
reduction of mobility observed during the re-test at D9. This suggests that while corticosterone
levels nearly doubled in stressed mice, confirming the effectiveness of the stress induction
protocol, the repeated behavioral measures were not appropriate. This hypothesis was tested

in phase Il.
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c. Phase lI: effects of repeated testing on day 14 after stress exposure on exploratory

behavior

1. Experimental design
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Figure 3 : This phase was designed to evaluate the potential habituation of animals to repeated behavioral assessments
(Elevated Plus Maze and Open Field tests), without stress exposure or treatment. Experimental design: Mice were
acclimated before the beginning of the experiment. A first behavioral stress assessment was performed on Day 0 (D0)
using the Elevated Plus Maze (EPM) and Open Field (OF) tests. No treatment or stress protocol was applied between DO
and D14. Asecond behavioral evaluation was conducted on Day 14 (D14), using the same tests, to investigate the effect
of repeated testing and habituation on stress-related behavioral parameters.2. Exploratory behavior in the Elevated plus
maze test: (a) Distance traveled; (b) Movement speed; (c) Entries into the open arms; (d) Ration of time spent in open
arms and closed arms; (e)Head dip. 3. Exploratory behavior in the Openfield test: (a) Distance traveled; (b) Movement
speed; (c) Entries into the center area; (d) Ratio of time spent in the center and at the border. Data are shown as mean

+ SEM. N = 14 mice per group. Statistical significance: **p < 0.01; ***p < 0.001.
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During the execution of Phase |, we observed significant changes in the animal’s behavior when
they were exposed to behavioral tests for the second time. This raised the hypothesis of a
potential "test-retest" effect, where prior exposure to the testing environment influences
subsequent behaviors. To validate this hypothesis, we conducted Phase Il. As shown in the
experimental design (Figure 3.1), the acclimatization period preceded Day 0 (DO), where the
first stress assessment was performed on one group of mice (n=14). A second stress
assessment took place on Day 14 (D14). Importantly, no interventions occurred between the
two tests—mice received no treatment, no candies, and no additional interactions—ensuring
that any observed changes were solely attributable to repeated test exposure. These stress
assessments were conducted using the Elevated Plus Maze test and the Open Field test. This
approach had helped analyze potential changes in behavioral responses over time and had

further investigated the "test-retest" effect.

The results reveal a significant decrease in exploratory behavior in mice between the initial
test and the retest, as assessed in both the Elevated Plus Maze (EPM) and Open Field (OF)

tests.

In more details (Figure 3.2), in the EPM, locomotor activity declined markedly, as shown by a
significant reduction in total distance traveled from 1215.4 + 97.0 cm to 783.7 £ 77.4 cm,
reflecting decreased exploratory drive upon repeated exposure. Similarly, the movement
speed (Figure 3.2.b) decreasing from 4.1 + 0.3 cm/ to 2.6 + 0.3 cm/s. The number of entries
into the open arms (Figure 3.2.c) was markedly reduced, from 46.4 + 4.5 to 14.8 + 4.2,
reinforcing the habituation effect to the testing environment. Similarly, the ratio of time spent
in open versus closed arms (Figure 3.2.d) showed a pronounced reduction, dropping from 1.0

+0.41t00.1+0.0, suggesting an increased preference for enclosed areas over open, anxiogenic
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spaces. Risk-taking behaviors, such as head dips (Figure 3.2.e), also significantly declined from

51.8+3.9t017.1 £ 5.0, supporting the overall reduction in exploratory motivation.

Comparable results were observed in the OF test (Figure 3.3). Total distance traveled
decreased from 1294.5 £+ 111.5 cm to 847.0 £ 84.1 cm, and movement speed similarly dropped
from 4.3 £0.4 cm/sto 2.8 + 0.3 cm/s, reinforcing the habituation effect. The number of entries
into the center zone (Figure 3.3.c) significantly decreased from 23.0 £+ 2.0 to 13.1 + 2.5,
indicating a lower tendency to explore central, anxiogenic areas. The ratio of time spent in the
center versus the periphery (Figure 3.3.d) showed a slight non-significant decline, suggesting
an increased preference for remaining near the periphery rather than venturing into the
central area. This behavioral shift likely reflects a reliance on previously explored zones as the

mice adapted to the environment.

The results of phase Il demonstrate a pronounced habituation effect, characterized by a

reduction in exploratory behavior during the retest.
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d. Phase lll: impact of Rhodiola rosea L. roots powder on optimized murine model
(Optimization after 14 days of stress exposure with treatment using Rhodiola rosea L.
root powder (administered from day 15 to day 33)

1. Experimental design
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Figure 4 : This final phase compared a treated group and a placebo group, both subjected to the same chronic mild
stress protocol, as well as a non-treated, non-stressed control group. The aim was to assess the efficacy of Rhodiola
rosea root powder in modulating behavioral and physiological stress responses in comparison to untreated animals. 1.
Experimental design: Mice were first acclimated for 14 days (D0-D14). From Day 15 (D15) to Day 33 (D33), animals
received one gummy per day containing either Rhodiola rosea root powder (enriched with 3% salidroside) or a placebo.
Gummies were administered individually to each mouse in a separate cage to ensure complete ingestion. From D27 to
D33, animals were subjected to a series of mild, variable stressors: cage tilting, olfactory stress, food and water
deprivation, bedding reduction, continuous light exposure, social isolation, and physical restraint. On D33, behavioral
testing was performed (Elevated Plus Maze and Open Field tests), followed by euthanasia and blood collection for
serum corticosterone analysis. 2. Exploratory behavior in the Elevated plus maze test: (a) Distance traveled; (b)
Movement speed; (c) Entries into the open arms; (d) Ration of time spent in open arms and closed arms; (e)Head dip.

3. Exploratory behavior in the Openfield test: (a) Distance traveled; (b) Movement speed; (c) Entries into the center area;
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(d) Ratio of time spent in the center and at the border. 4. Corticosterone assay. Data are shown as mean + SEM. N = 12

mice per group. Statistical significance: *p < 0.05; **p < 0.01; ***p <0.001; ***p < 0.0001.

In final phase (Phase Ill), our primary objective was to evaluate whether Rhodiola rosea
L. treatment could mitigate the behavioral and physiological consequences of chronic stress.
For this reason, the experimental design was focused exclusively on stressed animals, as they
represent the most relevant condition for testing adaptogenic and anxiolytic effects. Including
a non-stressed group with or without treatment would have provided additional information
regarding baseline effects of Rhodiola rosea L.; however, due to ethical considerations and in
strict compliance with European Directive 2010/63/EU on the protection of animals used for
scientific purposes, as well as its transposition into Belgian law (Royal Decree of 29 May 2013),
our study design followed the 3Rs principle (Replacement, Reduction, Refinement) (Directive
2010/63/EU, 2010). Specifically, the exclusion of additional non-stressed groups was based on
the reduction principle, aiming to limit the number of animals used while still achieving

scientifically valid results (Phase lll was restricted to stressed groups only).

The final phase of the study was conducted on two groups of 12 mice: one group treated with
Rhodiola rosea L. (800 mg/kg/day) and a control group treated with placebo. The first 14 days
(D1 to D14) were dedicated to acclimation, including handling and habituation to the
gummies. From Day 15 (D15) onward, the mice received either Rhodiola rosea L. (treated
group) or a placebo (control group), and this administration continued until Day 33 (D33). All
mice were exposed to the stress protocol between Days 27 (D27) and 33 (D33), while mice
continued receiving their respective treatments. To prevent the test-retest effect, which was
observed during Phase Il, a single behavioral assessment was conducted at D33 using the

Elevated Plus Maze (EPM) and the Open Field (OF) tests to evaluate anxiety-related behavior.
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Finally, the mice were euthanized, and serum corticosterone levels were measured to correlate

behavioral observations with physiological stress responses.

The results suggest an overall increase in exploratory activity and a reduction in behavioral

inhibition following Rhodiola rosea L. treatment.

In more details, in the EPM (Figure 4.2), locomotor activity was greater in the treated mice, as
reflected by an increase in the total distance traveled (Figure 4.2.a) from 921.0 + 78.3 cm
(placebo) to 1416.2 + 86.2 cm (treated ), along with an increase in movement speed (Figure
4.2.b) from 3.1 £ 0.3 cm/s to 4.7 £ 0.3 cm/s. Treated animals also made more entries into the
open arms, increasing from 11.3 + 2.9 to 36.9 + 4.3, and spent more time in open versus closed
arms, with a ratio rising from 0.1 £ 0.0 t0 0.5 + 0.0, indicating reduced avoidance of anxiogenic
areas. and suggesting reduced anxiety-like behavior. In addition, risk-taking behaviors such as
head dips were significantly more frequent in treated mice, nearly doubling from 13.3 +3.0 to

43.2 + 4.4, suggesting enhanced proactive exploration.

In the OF test, the beneficial effects of Rhodiola rosea L. treatment were also evident (Figure
4.3). The locomotor activity was enhanced in the treated mice, with total distance traveled
(Figure 4.3.a) increasing from 938.2 + 72.4 cm (placebo) to 1490.3 + 111.8 cm (treated), and
movement speed (Figure 4.3.b) rising from 3.1 £ 0.2 cm/s to 5.0 £ 0.4 cm/s. Treated animals
also showed a higher number of entries into the center zone (13.9 + 2.3 vs. 20.6 + 2.2),
indicating reduced avoidance of anxiogenic central areas. Although the ratio of time spent in
the center versus the periphery (Figure 4.3.d) did not differ significantly between groups, a
trend toward a decrease in this ratio was observed in the untreated group, suggesting a

preference for the periphery in untreated mice.
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Finally, corticosterone levels (Figure 4.4) confirmed a physiological reduction in stress
response, with treated mice showing significantly lower concentrations (28.9 + 5.2 ng/mL)
compared to placebo-treated animals (70.6 + 12.3 ng/mL; p < 0.01), consistent with the

observed behavioral improvements.
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Figure 5: Comparison of corticosterone levels in non-stressed mice treated with placebo and stressed mice treated

with Rhodiola rosea L. N=12.

Comparison of these corticosterone levels with those obtained in Phase | suggests that
stressed mice treated with Rhodiola rosea L. (28.9 + 5.2 ng/mL) exhibited corticosterone levels
like those of non-stressed mice (36.5 + 7.5 ng/mL) (Figure 5). These findings reinforce the
hypothesis that Rhodiola rosea L. exerts an adaptogenic effect by mitigating both behavioral

and physiological responses to stress.

29



511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

4. DISCUSSION

The present study aimed to evaluate the effects of Rhodiola rosea L. root powder on stress-
related behavioral and physiological responses in mice. While most existing research has
focused on Rhodiola rosea L. extracts, particularly standardized formulations containing 3%
rosavin and 1% salidroside (Dimpfel et al., 2018), this study investigated the impact of a
Rhodiola rosea L. root powder formulation with 3% salidroside. This approach allowed for a
direct assessment of the adaptogenic properties of the plant in its powdered form, while also
providing new insights into its efficacy in mitigating stress-induced alterations in behavior and
corticosterone levels. The adaptogenic properties of Rhodiola rosea, defined as its capacity to
enhance the organism’s resistance to stress, are widely regarded as the result of a complex
interaction among multiple phytochemical constituents rather than the action of a single
active compound. The presence of numerous constituents, including those occurring only in
trace amounts, may play a critical role in shaping the overall biological activity of the plant.
Variations in cultivation, environmental conditions, and processing can alter the
phytochemical profile, thereby influencing the physiological effects observed in vivo (lannuzzo

et al.,, 2024).

In the present study, R. rosea root powder was produced using an indoor cultivation system
that ensures tightly controlled and reproducible growth conditions. This approach minimizes
variability and enables a consistent phytochemical fingerprint. The multifactorial nature of R.
rosea bioactivity also underlies current quality-control practices, which typically rely on both
rosavins and salidroside—phenylpropanoid and phenylethanoid derivatives—as key marker

compounds (Kottun-Jasion et al., 2025). The formulation examined here, however, consists of
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whole root powder standardized to 3% salidroside, representing a distinct composition

compared with conventional market extracts that are usually enriched in rosavins.

The unique phytochemical complexity of the root powder, including its trace
constituents, may contribute to the biological effects observed and supports the hypothesis of
synergistic interactions among components (Khanum et al., 2005). These findings establish a
basis for future mechanistic studies aimed at isolating individual molecules and formally
characterizing synergistic or additive interactions. Overall, the results demonstrate that
Rhodiola rosea L. root powder (with 3% salidroside) exerts a significant modulatory effect on

both physiological and behavioral markers of stress.

The results from the first phase of the study highlighted a reduction in exploratory
behavior in both stressed and non-stressed mice, even before exposure to the stress. This
decline underscores the importance of considering habituation effects when interpreting
behavioral outcomes, as repeated exposure to the same test environment can lead to
decreased exploratory activity independent of stress induction. The second phase further
confirmed this habituation effect. These results emphasize the complexity of interpreting
behavioral changes, as habituation can obscure the direct impact of stress, highlighting the
necessity of accounting for this effect in stress-related studies and integrating both
physiological and behavioral measures for a more comprehensive analysis. The study by
Almeida et al. clearly shows that repeated exposure to the Elevated Plus Maze leads to a
significant reduction in both the number of entries and the time spent in the open arms. This
finding suggests that increasing familiarity with the test environment can dampen exploratory
behavior. These results are in line with those reported by Lee and Rodgers and Rodgers et al.,

who also observed decreased open-arm exploration upon reexposure. (Almeida et al., 2016,
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Lee & Rodgers, 1990; Rodgers et al., 1992). In contrast, earlier studies by Pellow et al. (1985)
and Chappell et al. (2004) did not find any notable changes in these parameters across
repeated sessions, highlighting possible methodological differences or variations in

experimental design (Chappell et al., 2004; Pellow et al., 1985).

In the final phase, the effects of Rhodiola rosea L. root powder on stress-induced
behavioral and physiological changes were assessed. Mice receiving the treatment displayed
enhanced exploratory activity, increased open-arm exploration in the Elevated Plus Maze, and
greater center exploration in the Open Field test compared to placebo-treated mice. These
behavioral changes were accompanied by a significant reduction in corticosterone levels,
indicating a diminished physiological stress response. Notably, corticosterone concentrations
in treated mice were comparable to those observed in non-stressed animals from Phase |,

further supporting the adaptogenic potential of Rhodiola rosea L..

While treated mice showed increased locomotor activity—evidenced by higher
movement speed and greater distance traveled—this could, in theory, be attributed to a
stimulant-like effect of the plant rather than a true anxiolytic response. Elevated motor activity
alone does not necessarily imply reduced anxiety, as an animal may remain anxious despite
being more active. However, anxiety-related behaviors are more accurately assessed using
specific indicators such as the ratio of time spent in the center versus the periphery in the
Open Field test, the ratio of time spent in open versus closed arms in the Elevated Plus Maze,
and the number of entries into these areas. In this study, these anxiety-related measures were
closely linked to locomotor activity data. Since treated mice not only moved more but also
entered open or central areas more frequently, the results strongly support the idea that

Rhodiola rosea L. produces an adaptogenic effect rather than a mere excitatory response and
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further reinforce its potential as a natural modulator of stress. Moreover, the movement
speeds recorded during the first test of Phase | and Phase I, as well as the speed observed in
the treated group during Phase Ill, remained consistent across both the Open Field and
Elevated Plus Maze tests. This stability in locomotor activity further reinforces the conclusion
that the plant’s effect is adaptogenic in nature, rather than simply stimulating, strengthening

the overall interpretation of its stress-modulating properties.

Furthermore, movement speeds recorded during the first tests of Phase | and Phase I,
as well as the speed observed in the treated group during Phase lll, remained stable across
both behavioral paradigms. This consistency in locomotor activity further supports the

interpretation that the plant’s effects are adaptogenic rather than simply stimulating.

Nevertheless, the study has a some limitation. The experimental design did not include
a dedicated group of non-stressed animals treated with Rhodiola rosea L. to evaluate the
plant’s effects in the absence of stress. Such a group would have been essential to fully exclude
the possibility of subtle psychostimulant effects and to better isolate the treatment’s intrinsic
behavioral impact, particularly on locomotion. It was provided a reasonable justification for
this omission, acknowledging it highlights an important avenue for future research. Future
studies should therefore include a non-stressed, Rhodiola-treated group to directly assess the
baseline behavioral influence of the extract and to further clarify its adaptogenic versus

stimulant properties.

The results of this study demonstrate that Rhodiola rosea L. root powder significantly
influences behavioral and physiological stress responses in mice. These findings align with
prior research showing that Rhodiola rosea L. regulates stress-related gene expression,

reduces corticosterone levels, and mitigates stress-induced disruptions in the brain and
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immune system (Wrébel-Biedrawa & Podolak, 2024; Dinel et al., 2019; Vasileva et al., 2017).
Similar adaptogenic effects were also reported by Shikov et al. (2011), who observed increased
physical endurance and a reduction in anxiety-associated behaviors such as grooming
following a 7-day oral administration of a liquid Rhodiola rosea L. extract. However, in their
study, anxiolytic effects in the light/dark and open-field tests did not reach statistical
significance. This discrepancy may be attributed to several methodological differences,
including the treatment duration, the type and dosage of Rhodiola rosea L. administered, and
the testing conditions. These factors likely contributed to the more robust anxiolytic and
physiological effects observed in our chronic stress model, notably the significant increases in

exploratory behaviors and the marked reduction in corticosterone levels.

Rhodiola rosea L. is recognized as an adaptogen that enhances stress resilience. Studies
have reported its anxiolytic and antidepressant effects, with evidence showing improved
behavioral responses and reduced corticosterone levels following chronic mild stress
(Konstantinos & Heun, 2020; Matiolli et al., 2009; Palmeri et al., 2016; Jéwko et al., 2018). Its
active compound, salidroside, counteracts inflammation through inhibition of the P2X7/NF-
kB/NLRP3 pathway (Chai et al., 2022), helping to restore homeostasis disrupted by chronic
stress (Busillo et al., 2011; Knezevic et al., 2023; Amasi-Hartoonian et al., 2022). Rhodiola rosea
L, recognized for its adaptogenic properties, modulates corticosterone production by
influencing the hypothalamic—pituitary—adrenal (HPA) axis during periods of stress. Evidence
suggests that Rhodiola rosea L. extract can attenuate the hyperactivity of the HPA system,
thereby regulating corticosterone release. Under stress conditions, the hypothalamus secretes
corticotropin-releasing hormone (CRH), which stimulates the anterior pituitary to release

adrenocorticotropic hormone (ACTH), ultimately triggering the adrenal glands to secrete
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corticosterone (Bikri et al., 2022; Romanov et al., 2014; Bai et al., 2022; Kim et al., 2024). This
pathway is mediated through glucocorticoid receptors, which modulate stress-responsive

gene expression (Maggio & Segal, 2010).

The adaptogenic potential of Rhodiola rosea L. depends on its dosage and composition
(Derkachov & Berezovskyi, 2024). In this context, our study demonstrated that a newly
developed Rhodiola rosea L. root powder, with a high concentration of salidroside (3%),
effectively mitigates stress-induced behaviors. To further explore the potential of Rhodiola
rosea L., future research could focus on comparing the effects of root powder with those of
standardized extracts. While our results confirm the efficacy of the root powder formulation,
investigating whether its effects differ from commercial extracts would provide valuable
insights into its specific adaptogenic properties. If both formulations yield comparable results,
the choice of root powder may offer additional advantages. Unlike extracts, which require the
use of solvents for the extraction process, root powder maintains the plant’s natural
composition without the need for chemical processing. This aligns with the current trend
toward greener, more sustainable solutions in natural health products, reducing the
environmental impact associated with solvent use while preserving the full spectrum of

bioactive compounds naturally present in the plant.

The concept of hormesis, defined as a biphasic response to a bioactive substance with
stimulatory effects at low doses and inhibitory effects at high doses, has recently been
discussed in the context of the biological activity of Rhodiola rosea L. Several in vitro studies
conducted on unicellular models (such as Saccharomyces cerevisiae) have highlighted
hormetic responses to Rhodiola rosea L. extract or its major active compound, salidroside

(Schriner et al., 2009; Bayliak et al., 2013; Calabrese et al., 2023). These studies show beneficial
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effects at low doses on longevity, oxidative stress resistance, or cell survival, while higher
doses induce opposite or even deleterious effects. Nevertheless, most of this research has
been conducted in vitro or on highly simplified models, and few in vivo studies have directly
assessed the existence of a hormetic effect in the context of chronic stress. Moreover, the
available studies focus more on longevity or cellular protection than on behavioral or
neuroendocrine effects related to stress. In this work, although we did not systematically
explore a range of doses to characterize a potential hormetic response, our results indicate
that a high and prolonged dose of Rhodiola rosea L. root powder enriched in salidroside (3%)
produces significant anxiolytic and anti-stress effects. It would be relevant in future studies to
test different doses and treatment durations in order to determine whether a biphasic dose—

response relationship also appears in behavioral models of chronic stress.

This study provides promising evidence for the adaptogenic properties of Rhodiola
rosea L., yet several limitations should be acknowledged to accurately interpret the findings.
Biologically, the investigation focused solely on corticosterone levels, without a broader
assessment of the hypothalamic-pituitary-adrenal (HPA) axis, limiting insight into the precise
site of action. Behaviorally, the study did not address additional domains such as fine motor
function or cognition, which could further contextualize the observed effects. Moreover, the
fixed treatment duration and single high-dose regimen preclude conclusions about long-term
efficacy or dose-response relationships. These limitations underscore the need for further

targeted studies to refine our understanding of Rhodiola rosea L.’s adaptogenic potential.

Overall, the observed reductions in stress-related behaviors and corticosterone levels
suggest that Rhodiola rosea L. root powder may help mitigate the effects of chronic stress

and enhance adaptation to stress-inducing conditions. These findings contribute to the
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broader field of research on plant-derived adaptogens and highlight Rhodiola rosea L. as a
promising natural intervention for stress-related disorders. Further investigations should
examine the long-term effects of Rhodiola rosea L. supplementation, its influence on

additional physiological markers of stress, and its mechanisms of action at the molecular level.
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